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Abstract

Learning to read is an essential life skill, yet many children
struggle and may even fail to learn to read.
Developmental dyslexia (DD) is a specific learning disorder
characterized by deficits in reading and reading-related
tasks. Even though early intervention is crucial for
successful remediation, many children do not receive a
diagnosis until second grade or later. Research has shown
high heritability of DD. Additionally, a link has been
established between early language abilities and the
development of reading skills. Moreover, individuals with
DD display differences in neural structures implicated in
reading even prior to learning to read compared to their
typically developing peers. The aim of this review is to
identify genetic, language, and brain predictors of
reading.

Keywords: Dyslexia; Psychopathology; Language
impairment

Abbreviations: AD: Axial Diffusivity; DD: Developmental
Dyslexia; FA: Fractional Anisotropy; RD: Radial Diffusivity.

Introduction
Learning to read is one of the major milestones in a child’s

life, and is essential for scholastic achievement, and future
employment. Nonetheless, many children struggle while
learning to read, and as many as 11.6% percent of children are
diagnosed with developmental dyslexia (DD) [1]. DD is a brain-
based specific learning disability characterized by deficits in
reading and reading-related skills, such as phonological
awareness (the ability to manipulate phonemes, the smallest
units of speech), spelling, and/or rapid visual/verbal
manipulation of letters and/or words despite adequate
intelligence [2]. Children with DD are often viewed by
educators and peers as lazy or simply “acting out,” and
consequently may develop anxiety or other psychopathology

[3]. Compared to their peers, not only are children with DD
less likely to complete high school and/or college, but also are
more likely to enter the juvenile justice system [4].
The dilemma is that even though early intervention is the gold
standard of treatment, DD is typically not diagnosed until
second or third grade [5]. Children essentially need to struggle
and fail prior to the recognition and diagnosis of the
fundamental disorder. However, recent data suggest that DD is
highly heritable and that the majority of genes implicated in
DD are also involved in neuronal migration and axonal
development as well as neural activity in language-related
brain structures [6-12]. The aim of this review is to shed light
on genetic, language, and neural predictors of DD.

Genetic Basis of Developmental
Dyslexia

DD is highly heritable; estimates suggest that DD occurs in
65% of monozygotic twin boys and 63% in monozygotic twin
girls [13]. A recent meta-analysis consisting of 420 children
with DD reports that children with a first degree relative with
DD have a 45% chance of also being diagnosed with DD [1]. A
number of DD susceptibility genes have been identified,
including DCDC2, DYX1CI, ROBO1, KIAA0319, and the majority
of these genes play a role in neuronal migration and axonal
development [14-17]. Experimental manipulation of these
genes in rodent models results in localized gray matter
malformations, such as ectopias, which result in atypical
cortical connectivity [18]. Cortical ectopias have previously
been shown in postmortem studies of adults with DD [19].
Furthermore, DCDC2 deletion in humans with DD has been
linked to reduced fractional anisotropy (FA), a measure of fiber
tract integrity, in the left arcuate fasciculus and the genu of the
corpus callosum [20]. This is consistent with the notion that
some factors causing DD are present prior to learning to read
and possibly at birth.

Language and Reading
Ample evidence suggests an intimate relationship between

the development of DD and language impairment, which is
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diagnosed when a child’s language development lags behind
his/her other cognitive skills despite exhibiting average or
above-average nonverbal abilities [21]. In fact, a number of
genes implicated in DD, DCDC2, KIAA0319, FOXP2, CNTNAP2,
are also implicated in language impairment [22]. Furthermore,
markers within KIAA0319, FOXP2, CNTNAP2, and ZNF385D
may contribute to comorbid diagnoses of DD and language
impairment [22].

A recent study examined the relationship between speech
production, language, and literacy in children with and without
a familial risk of DD [23]. Interestingly, speech production was
more highly correlated with phonological processing in
children with a familial risk of DD than controls. Children with
a familial risk of DD displayed speech production deficits
compared to control children. 45% of children with a familial
risk of DD developed word reading deficits. Poor readers
displayed weaknesses in language, phonological processing,
and early literacy measures, but no deficits in speech
production. This suggests that speech processing deficits may
be a marker of familial risk, but is not associated with the
manifestation of DD.

Impaired nonword repetition has been implicated in both in
language disorders and DD. In 2011, Baird and colleagues set
out to disentangle this relationship, and examined children
who had language impairment or were siblings of children
with language impairment [24]. Nonword repetition was
impaired in children who currently or previously displayed
language impairment. Reading, decoding, spelling and compre-
hension skills correlated severity of language impairment.
Interestingly, nonword repetition differentiated children with
language impairment with and without reading impairment
(defined as deficits in decoding or spelling). The authors
suggest nonword repetition may be a marker for language
impairment that co-occurs with reading, spelling, and
decoding deficits.

A recent meta-analysis reviews oral language deficits in
children with a familial risk of DD [1]. Infants and toddlers with
a familial risk of DD who are ultimately diagnosed with DD
display poorer articulatory skills, vocabulary knowledge, and
grammar than peers with a familial risk of DD who do not
develop DD [1]. Preschoolers with a familial risk of DD who
ultimately are diagnosed with DD display poorer auditory
processing skills, letter knowledge, and reduced sensitivity to
rapid auditory processing compared to at-risk peers who do
not receive a diagnosis of DD [1]. Furthermore, at-risk
preschoolers demonstrate poorer articulatory skills,
vocabulary knowledge, and phonological processing skills than
control children [1]. At-risk school-age children display reduced
nonverbal vocabulary than control children [1]. Interestingly by
school-age, deficits in articulatory accuracy, vocabulary
knowledge, letter knowledge, and grammar are resolved in at-
risk children [1]. At-risk children who are later diagnosed with
DD still display deficits in vocabulary knowledge at school-age
compared to peers [1].

Although there is an intimate link between language and
reading abilities, not all children with language impairment are
later diagnosed with DD. In 2009, Bishop and Hayiou-Thomas

aimed to identify protective factors in children with language
impairment without DD. Children with language impairment
without DD display deficits in vocabulary knowledge, sentence
comprehension, and memory for sentences [21]. Interestingly,
rapid serial naming performance was within the normal range
for children with language impairment but not DD [21]. It
appears that the ability to name pictures and digits rapidly
may serve as a protective factor in the development of DD.

The Reading Brain
Imaging studies suggest that the reading circuit in typically

developing individuals consists of two left lateralized posterior
systems, one which is ventral and one which is dorsal [25]. The
ventral component consists of the left lateral extrastriate areas
and the occipitotemporal area; it is activated during word and
pseudoword reading tasks. The dorsal system includes the
angular gyrus in the inferior parietal lobule, and the posterior
aspect of the superior temporal gyrus (Wernicke’s area); it is
implicated in mapping the sounds of language (phonemes)
onto printed text (graphemes). A third component, the
anterior circuit consists of the inferior frontal gyrus (Broca’s
area); it is crucial for sequencing and control of speech-
gestural recoding and is implicated in silent reading and
naming [25].

The Neural Basis of Developmental
Dyslexia

Children and adults with DD display both structural and
functional anomalies. Linkersdörfer and colleagues (2012)
conducted a meta-analysis of nine VBM studies of children and
adults with DD, and observed that the largest reduction in
cortical grey matter was in the left fusiform extending into the
left inferior temporal gyrus in readers with DD [26]. Additional
reductions in grey matter were seen bilaterally in the
supramarginal gyri and cerebellum in individuals with DD.
Children with DD also show atypical activations when engaged
in reading tasks. The temporoparietal region has been
reported to have atypical functional activation, as measured
with functional magnetic resonance imaging (fMRI), in DD
compared to typical readers [27-30]. Reduced bilateral
occipitotemporal activation was also observed in a meta-
analysis of children with DD [31]. Additionally, older children
and adults with DD also display increased right hemispheric
activity during reading and reading-related tasks compared to
controls [32]. The absence of activation differences in frontal
and right hemisphere regions between typically developing
and children with DD may suggest that these differences, often
found in adults, reflect compensatory strategies.

School-age children and adults with DD also display altered
white matter connectivity. Diffusion-weighted imaging (DWI) is
a structural magnetic resonance imaging technique, which
permits reconstruction and measurement of white matter
tract integrity. Compared to typical adult readers, those with
DD display reduced FA, a summary measure of white matter
fiber architecture, in the left temporoparietal area [33-35]. FA
is the normalized standard deviation of the three eigenvalues
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and indicates the degree to which the isodiffusion ellipsoid is
anisotropic (i.e., one or two eigenvalues are larger than the
mean of all three eigenvalues) [36].

The Role of the Arcuate Fasciculus in
Reading and Developmental Dyslexia

The left arcuate fasciculus is a white matter tract that
directly connects two well-documented regions of the reading
network, the temporoparietal region and the left inferior
frontal gyrus [37,38]. Intraoperative subcortical stimulation of
the left arcuate fasciculus in adults resulted in phonemic
paraphasias (i.e., incorrect substitution of phonemes) [39], and
stroke patients with lesions in the left arcuate fasciculus also
experience phonological deficits [40].

The left arcuate fasciculus is implicated in reading and
reading related tasks including phonological processing,
reading fluency, speech production, language comprehension,
and speech repetition [41,42]. In fact, learning to read results
in increased integrity of the left arcuate fasciculus in previously
illiterate adults [43].

Vandermosten and colleagues (2012) segmented the left
arcuate fasciculus into three regions: arcuate fasciculus-
anterior, arcuate fasciculus-direct, and arcuate fasciculus-
posterior in 20 adults with DD and 20 controls [38]. When
compared to controls, adults with DD displayed reduced FA
within the left arcuate fasciculus-direct. In addition to
assessing FA, Vandermosten et al. also measured axial
diffusivity (AD) and radial diffusivity (RD) [38]. AD measures
the magnitude of microstructure oriented in the direction of
the principal axis, while RD measures the magnitude of
microstructure in the direction perpendicular to the principal
axis [37]. Reductions in FA were accompanied by increases in
RD, but not AD, which they interpreted as suggesting reduced
myelination in adults with DD. Furthermore, they observed
that the left arcuate fasciculus-direct, the midsection of the
arcuate fasciculus, was positively correlated with phonemic
awareness skills across groups. They also found a negative
correlation between the FA of the right arcuate fasciculus-
direct and phonemic awareness skills suggesting increased left
lateralization in the arcuate fasciculus-direct is associated with
enhanced phonological processing abilities.

Adults and children with DD display reduced FA within the
left arcuate fasciculus relative to typically developing readers
[33,38,44]. FA of the entire left arcuate fasciculus also
correlates with phonological awareness in school-age children
[36], and the volume of the left arcuate fasciculus correlates
with phonological awareness in kindergarteners [45].
Furthermore, in a sample of 58 children between ages 5-9,
white matter volume changes within the left arcuate fasciculus
predict reading outcomes during the developmental period
when children become fluent readers [46]. Similarly, the
volume of the left arcuate fasciculus and superior corona
radiata assessed in 38 children between five- and six-years
predicted third grade reading abilities [47].

A recent study observed FA of the left arcuate fasciculus and
bilateral inferior fronto-occiptial fasciculi correlates with
phonological awareness in Dutch speaking pre-readers with
(N=36) and without a familial risk of DD (N=35) [48]. Children
completed behavioral testing at the start of kindergarten and
an MRI scan at the end of the academic year. Children can be
considered pre-readers since none of the participating schools
included reading instruction in kindergarten. Regression
analyses suggest phonological awareness skills predict FA in
left arcuate fasciculus and bilateral inferior fronto-occiptial
fasciculi across pre-readers with and without a familial risk of
DD. Moreover, pre-readers with a familial risk of DD display
reduced FA in the left inferior fronto-occiptial fasciculus and a
trend toward reduced FA in the posterior left arcuate
fasciculus compared to pre-readers without a familial risk of
DD.

The Role of the Corpus Callosum in
Reading and Developmental Dyslexia

Even though a number of studies indicate atypical white
matter connectivity in DD, the corpus callosum, the largest
interhemispheric white matter tract remains understudied
[49]. The corpus callosum may be a particularly important
neural pathway in DD since children and adults with DD likely
need to rely on the corpus callosum to recruit right
hemisphere homologs during reading and reading-related
tasks as a compensatory mechanism [33,50-53].

The corpus callosum’s role in DD is complex due to its
diverse morphology. The midbody of the corpus callosum is
implicated in processing primary sensory and higher order
auditory information along with premotor and primary motor
cortices [54-56]. Large axons within the midbody of the corpus
callosum facilitate rapid sensory integration essential to
perceive temporal cues in auditory and visual stimuli which are
needed for phonological processing and ultimately fluent
reading. Individuals with DD (which included 12 children, 3
adults, and 9 compensated adults) display reduced FA values
within the midbody of the corpus callosum [57].

In contrast, posterior regions of the corpus callosum, such
as the splenium display greater FA values in adults and
children with DD than typically developing controls [49,58-60].
In typical development, the splenium consists of small densely
packed axons; thus, splenium enlargement suggests a greater
number of axons and greater interhemispheric connectivity
[56]. Furthermore, compared to typically developing adults
(N=18), individuals with DD (N=9) display increased FA and AD
in the splenium [49]. In particular, only letter word
identification was negatively correlated with FA and AD within
the splenium across controls and readers with DD. Reduced
splenium interhemispheric connectivity may suggest reduced
connectivity between the ventral occipital areas through
occipital interhemispheric callosal fibers, and may result in
greater lateralization of orthographic processing. This is
consistent with the fact that typically developing individuals
show left lateralized activation of the ventral occipital area,
near the so-called visual word form area [61], while individuals
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with DD display bilateral activation of this area during reading
[28].

Hasan and colleagues (2012) similarly observed that
compared to controls (N=26), children and adolescents with
DD (N=24) display increased FA in the splenium of the corpus
callosum [60]. However, they observed that the posterior
midbody of the corpus callosum was negatively correlated
with measures of single word reading and reading
comprehension. The authors argue that increases in
myelination and/or axial integrity within the posterior
midbody of the corpus callosum may enhance
interhemispheric communication, which may reflect greater
compensatory mechanisms in children and adults with DD.
This is in line with previous work suggesting increased values
of FA in the posterior aspect of the corpus callosum is
associated with reduced lateralization of the left hemisphere
[62].

Since the corpus callosum is a bilateral structure, damage to
territory on either the left side of the brain (or restricted
inputs to those regions from damage to regions that project to
those areas), can change the number (or integrity) of fibers
traveling to the right side of the brain. This suggests that DWI
measures of the corpus callosum are to some extent a
reflection of both the relative integrity of the origin and
destination of the fibers, as well as differential degree of
connectivity between the two sides. When the origin and
receiving sides of the cortex are symmetric, one would
presume that the degree of lateralization of function would be
lowest.

It is sometimes claimed that increases of interhemispheric
connectivity mediate recovery in a subgroup of individuals
with DD by enhancing right hemispheric activation beyond
normal levels. [28,49,56,57,63]. Since this hyperactivation is
generally observed past infancy, it would be of interest to see
whether enhanced corpus callosum connectivity is intrinsic in
children and infants at risk of DD prior to the majority of
reading development. If enhanced connectivity precedes
compensation, in certain callosal areas, this would help to
differentiate the roles of the corpus callosum in reading
acquisition vs. its recovery.

Conclusion
Learning to read is critical for an individual’s future success,

yet a significant proportion of children struggle while learning
to read and are ultimately diagnosed with DD. Typically,
children do not receive a diagnosis of DD until second or third
grade, even though research suggests that early intervention is
the gold standard of care [5,64]. Troubling is the fact that a
number of predictors of reading are present early in a child’s
life. The aim of this review is to shed light on genetic,
language, and neural predictors of reading. Future research is
needed to determine the sensitivity and specificity of these
measures such that treatment is made available to the
individuals that will likely benefit most. The long-range goal of
early recognition and diagnosis is that children will receive

treatment at an early age when their brains are most plastic
and responsive.
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