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Disruptions in the spermatozoal genetic integrity play a major 
role in determining the subsequent embryonic development 
trajectory. Sperm contributes an important role in post 
fertilization induction of normal development but also processes 
extending beyond the fertilization. Damaged or defective 
spermatozoa affect the outcome of pregnancy but also the 
health of the offspring, resulting not only in paternally mediated 
increase in miscarriages but also dominant genetic disorders in 
the progeny, including neuropsychiatric disorders like autism 
and schizophrenia, and even childhood carcinomas [1-3]. Sperm, 
a highly polarized cell is unique in its morphology, chromatin 
structure, and function, is characterized by a myriad of changes 
which occur during spermatogenesis and spermatogenesis. The 
haploid sperm chromatin undergoes chromatin packaging into a 
volume that is typically 10% or less than that of other somatic 
cell nucleus. This remarkable level of compaction is achieved by 
significant changes of ordered histone replacement by transition 
proteins, followed protamine’s [4,5]. 85% of the normal human 
sperm chromatin remains packaged into toroid’s by protamine’s 
and 5–15% remains associated with histones, as compared 
to <5% being retained by other mammalian species, e.g. bulls, 
stallions, hamsters, and mice making it less compact tan other 
mammalian species [6,7]. Transcriptional and translational 
machinery of the spermatozoa are temporarily disengaged 
during the post-meiotic stage of spermatogenesis. The retained 
histones in the peripheral histone bound nucleosome complex 
remains transcriptionally active and have been explored for its 
epigenetic role (particularly histones carrying post-translational 
modifications) and contain telomeric DNA and promoters of genes 
of developmental importance [8].

The male reproductive functions are seen to witness gradual decline 
with age over a period of years and fathers are seen to bequeath 
more mutations with advanced age and the germline mutation rate 
is 6 times higher than in females, because of many more germ-cell 
divisions [9-11]. With age-dependent clonal expansion, mutant 
spermatogonial stem cells having a proliferative advantage over 
nonmutated cells. This germ line selection model explains the origin 
of autosomal dominant genetic disorders such as achondroplasia, 
complex polygenic conditions (schizophrenia, autism, epilepsy, 
bipolar disorder), cardiovascular malformations, diaphragmatic 
hernia, cleft palate, lower intelligence in children born to older 
fathers (higher sperm DNA damage [2,3,9,12-14].

The more vulnerability of DNA damage in sperm as compared 
to somatic cells may be due to its susceptibility to damage at 
various stages of spermatogenesis, function and transport, 
however majority of damage occurs post spermiogenesis It is 
multifactorial and may be due to both intrinsic as well as extrinsic 
factors. Intrinsic factors can be the result of protamine deficiency, 
abortive apoptosis, and excessive Reactive Oxygen Species (ROS) 
levels, presence of morphologically abnormal and immature germ 
cells. Various extrinsic factors include the following: paternal 
age, environmental exposures, radiotherapy, chemotherapy, 
electromagnetic radiation and possibly lifestyle factors such 
as nicotine and alcohol users, sedentary lifestyle, psychological 
stress/ depression consumption of fatty foods [1-3,15-20]. 

Oxidative Stress (OS) is one of the major causes of defective 
sperm function. It is mediated by a variety of Reactive Oxygen 
Species (ROS) which are highly reactive oxidizing agents and 
includes superoxide anion (O2.), nitric oxide (NO •), peroxyl 
(ROO.), or the hydroxyl (OH.) radicals (OH •) as well as powerful 
oxidants such as hydrogen peroxide (H2O2) or peroxynitrite 
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(ONOO-). Sperm as a professional generator of ROS, has its vast 
majority of these free radicals generated as a consequence of 
mitochondrial electron leakage during intrinsic apoptotic cascade 
and is also contributed by activated leukocytes in the seminal 
plasma [20]. Spermatozoa are more prone oxidative stress as 
they have limited antioxidant capacity because their cytoplasm 
is extruded outside during the process of spermatogenesis 
with a concomitant reduction in cytoplasmic antioxidants such 
as catalase and superoxide dismutase. Mild OS is required for 
driving the tyrosine phosphorylation event associated with 
sperm capacitation but supraphysiological ROS levels impede 
sperm membrane fluidity and permeability [21]. Moderate levels 
are beneficial for maintenance of telomere length and thus 
play vital role in maintenance of genomic integrity. OS disrupts 
the sperm DNA integrity and limit the fertilizing potential as a 
result of collateral damage to proteins and lipids in the sperm 
plasma membrane. Sperm cells are vulnerable attack by ROS 
as they contain high concentrations of unsaturated fatty acids, 
particularly docosahexaenoic acid with six double bonds per 
molecule [12]. The lipid peroxidation chain reaction culminates 
in the generation of small molecular mass electrophilic lipid 
aldehydes such as 4-hydroxynonenal (4HNE), acrolein, and 
malondialdehyde [22,23]. OS is also witnessed to modulate 
the epigenome by altered methylation patterns; it may have a 
significant impact on sperm epigenome and thus have adverse 
effects on developing embryo. Sperm OS also targets the 
telomeres, which are tandemly repeating hexameric units 
(5’TTAGGG3’) that cap chromosomal ends and are vital for 
genomic integrity and chromosomal stability. These are histone 
bound, located in periphery of sperm nucleus and are rich in 
guanine, the nucleotide with lowest oxidative potential. Both its 
location and guanine content make telomeres highly susceptible 
to oxidative damage [24-26].

The backbone of DNA helix is usual cleaved in the sperm and 
results either in single- and double-break strands (SSBs and 
DSBs), and oxidative attack occurs primarily at the guanine 
bases and causes the formation of base adducts, particularly 
8-hydroxy-2′-deoxyguanosine (8OHdG) and 8–oxo-7,8-dihydro-
2′-deoxyguanosine (8-oxodG) [18,23,27]. SSB are repaired by the 
Base Excision Repair (BER) and Nucleotide Excision Repair (NER) 
pathways, while DSB are repaired by Non-Homologous End Join 
(NHEJ) and Homologous Recombination (HR). Sperm has a very 
limited capacity for repair as they only possess the first enzyme 
in the BER pathway, 8-oxoguanine glycosylase 1 (OGG1), but 
the repair cannot be proceeded further because they lack the 
downstream enzymes (APE1, XRCC1). Sperm is dependent on 
the oocyte to resume the repair of basic site created by OGG1 to 

continue the BER pathway prior to initiation of S-phase of the first 
mitotic division. Sperm being transcriptionally and translationally 
inert, lack cytosolic antioxidants and as they have a very basic 
repair mechanism is unable to repair DNA damage. They may 
overwhelm oocyte repair mechanism if damage is extensive 
and thus unresolved damage may not only limit fertilization 
potential, but may persist post fertilization. In era of ART/ICSI use 
of sperm of suboptimal quality and aged oocytes (with inefficient 
and aberrant DNA repair mechanisms) further compounds the 
problem and may actually double the population in need for this 
technology in future generations.

Unresolved DNA damage post fertilization has potential to 
disrupt the integrity of both its DNA and RNA, create mutations/
epimutations in the offspring that can have and also have 
profound impact on the development potential of embryo 
through dysregulation of sperm transcripts [28-31]. The non-
genomic paternal delivery of selective transcripts by the 
transcriptionally inert spermatozoa has been seen to contribute 
to the transcriptome of embryo prior to activation of embryonic 
genome. Various mRNA transcripts like FOXG1, WNT5A, SOX3, 
and STAT4 have a critical role in cell fate determination, primary 
embryonal axis, and development of embryonic forebrain, 
hypothalamic pituitary axis and morphogenesis in the developing 
embryo. Dysregulation in sperm transcripts along with ODD may 
alter sperm methylation pattern and affect the sperm epigenome, 
lifelong health of the offspring and also have transgenerational 
effects. This may be underlying cause of embryo implantation 
failures, recurrent pregnancy losses, congenital malformations 
and even childhood cancers [32,33].

This explains the reason that why it becomes pertinent to 
undertake the relevant investigations and assays for assessment 
of male reproductive parameters not only because they reveal the 
status of the damage on the sperm but also reflect the underlying 
quality of spermatogenesis. And more importantly they may aid 
in revealing the detrimental effects of the said derangements on 
the developmental normality of the embryo and health of the 
future progeny.

As OS is caused by a host of modifiable factors especially unhealthy 
lifestyle and social habits (smoking, excessive alcohol intake, 
sedentary lifestyle, psychological stress, intake of nutritionally 
depleted food), lifestyle modifications and simple practices like 
incorporation of yoga and meditation can have a significant 
positive impact on reduction of OS and reduce ODD [3,14]. This 
may not only improve health of the individual but also reduce the 
incidence of genetic and epigenetic disorders in the offspring and 
thus reduce disease burden in future generations.
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