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Introduction
Development disorders are classified in as specific and pervasive. 
The specific disorder is characterized by developmental delays 
in a specific area or specific areas, while the pervasive disorder 
presents deficiencies in basic functions, in multiple contexts 
that include socialization and communication. Pervasive 
developmental disorders (PDDs) are part of the group of disorders 
of the autistic spectrum, known as neurodevelopmental disorder. 
The PDDs is a psychiatric condition caused by brain damage, not 
degenerative, accompanied by symptoms such as: delay in verbal 
and non-verbal communication; resistance to routine change; 
restricted and persistent interests in relation to an activity, topic, 
object, speech, idiosyncratic phrases, and so on; abnormalities 
in eye contact and body expression; difficulties in initiating and 
maintaining social relations. Each of these symptoms can be 
classified as mild, moderate or severe. These and other symptoms 
are part of the diagnostic criteria for autism spectrum disorders, 
more details can be found in [1].

Motivated by the possibility of developing new diagnostic tools, 
based on the symptoms and diagnostic criteria of autism, we 
seek to introduce discrete random walks as a diagnostic tool 

for autism. The literature provides examples on applications of 
random walks in biological systems and for medical purposes in 
[2-4].

The model Schütz and Trimper, also known as Elephant Random 
Walk (ERW), is a particular model of random walking which 
has characteristics that are appropriate for the construction 
of our model. Among them we highlight: random walker has 
the memory of each of his/her decisions taken throughout his/
her history, i.e., every decision is stored in memory at every 
instant of time, and this particular characteristic attributes a 
non-Markovian behavior in random walk; the model presents 
an accurate analytical solution; their diffusive regimes are well 
known and is considered the ideal model as it is the limit of best 
memory for discrete random walks. The ERW has been used as 
the basis for the construction of several other theoretical models, 
which display and enrich the spectrum of diffusive regimes and 
new search engines in memory, among other characteristics 
[5]. Some of these models, inspired by the Schütz and Trimper 
model, are: random Alzheimer’s walks, which deal with memory 
loss leading to the appearance of super-diffusion [6-10]; the 
model of random walks with Gaussian memory profile, having 
a connection with the model of Alzheimer’s walks when the 
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gaussian width has a specific magnitude; the exponential model, 
which solves the apparent paradox, of a stochastic process with 
exponential distribution, cannot lead to super-diffusion [11]; the 
random walks with q-exponential memory profile, which present 
a super diffusive transient when the time is arbitrarily large [12], 
and finally, we highlight the model with binomial memory profile, 
which presents narrow log-periodic modulations [13].

For our problem, we define the ERW model with the pattern that 
presents diffusive regimes, quantified by the Hurst exponent 
(H), which represents an individual who does not present PDDs 
symptoms. Therefore, we describe appropriately the majority 
characteristics of the ERW model that are present in the random 
walks models described above and which are also present in our 
model [6-13].

Nevertheless, we describe the relevant aspects of the model 
of Schütz and Trimper and its main characteristics, in addition 
to the dissemination regimes. The model of random walks with 
Gaussian memory profile, having a connection with the model of 
Alzheimer’s walks, taken at every moment of time, depends on 
the spectrum of decisions taken in every previous history of the 
walker in an equiprobable manner. To reclaim each past decision 
in an equiprobable way is to be responsible for shaping a random 
walk with a uniform memory profile. Given this, the probability of 
an action taken in the past to be remembered is 1/t, where t is the 
current time. The random walk is recorded at all times and this 
aspect attributes to the process a non-Markovian characteristic.

The stochastic dynamics of the process occur in the following 
way: the walker starts in time t0 and in a position x0. At every 
instant of time, the walker walks one step to the right or one 
step to the left, with probability p and 1 ̶ p, respectively. For this 
process, the stochastic evolution equation is given by

1 1t t tX X σ+ += +           				                      (1)

for the time t + 1. At every instant of time, the walker walks one 
step to the right or one step to the left, with probability p and 1 
̶ p, respectively. Memory consists of a set of random variables σť 
for the time ť < t that the walker can recover. This process occurs 
as follows:

(a)	 in time t + 1, a number ť of the set {1, 2, ..., t} is chosen 
randomly with uniform probability 1/t;

the variable σ is determined stochastically by following the 
following relationships, 1t tσ σ ′+ =  with probability p and 

1t tσ σ ′+ = −  with probability 1 ̶ p. 

The first step in the instant t=1, occurs according to the following 
dynamics: the walker is in position X0 and moves to the right with 
probability q or to the left with probability 1 − q, i.e., 1σ =+1 with 

probability q and 1σ = −1 with probability 1 − q the stochastic 
evolution equation is  

0
1

t

t t
t

X X σ ′
′=

= +∑             				                    (2)

The parameter p is the probability of the walker repeating an 
action from the past at a time ť. When p>1/2 the walker presents 
a persistent behavior, this is characterized by the repetition of 

past actions. For p<1/2, the walker takes an action contrary to the 
action that was selected, presenting an anti-persistent behavior. 
For the value of p=1/2 the random walk is Markovian. In the 
boundary regions of p=0 and p=1, two extreme behaviors arise. 
In p=0 the maximum of the persistent behavior occurs, while in 
p=1, the maximum of the persistent behavior occurs. In the latter 
case, the movement is ballistic, characterized by the typical value 
of the Hurst exponent (H=1) [5].

The first moment of the position is given by

( ) ( )1
x t tαβ

α
=
Γ +

           	     			                   (3)

and β=2q ̶ 1, α=2p ̶ 1 and Γ is the gamma function. The parameters 
α and β are defined in the interval [ -1, 1]. Using the parameter α, 
we can characterize the random walk as persistent for α > 0 and 
anti-persistent to α < 0. 

The second moment of the position is given by
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The diffusive behavior changes with the probability values p. For 
example, when p<3/4, the second moment is linearly dependent 
on t and the diffusion is regular (H=1/2). For p>3/4, the diffusion 
is characterized as superdiffusive and for the intermediate case, 
i.e., p=3/4, the second moment is described by a logarithmic 
function [5].

Additional information about the ERW model, such as probability 
distribution, the study of its limits, etc., can be verified in [5,14,15].

The Model
Our model consists of a pair of random walkers. Recently, two 
random walks were analyzed in which a walker makes a decision 
at instant t independently of the second. The first random walker 
represents an independent stochastic process (ERW model), 
while the latter makes decisions based on the history of the first 
(or its own history) with probability f (1 ̶ f) [16]. In this way, the 
unilateral influence of the first walker on the second is evident. 
However, the first walker is not influenced by the second. The 
first walker is called “Professor” and the second “Student”. 
When f=0, the Student does not learn from the Professor and 
only makes decisions based on his/her own history, representing 
the maximum of restricted interests (it is associated with severe 
autism). As f grows, the interests of the student become less 
restricted and they learn from the Professor, and the maximum 
(minimum) learning occurs when f=1 (f=0). At the outset of 
microscopic dynamics, Student imitates (“learns”) the Professor’s 
decisions with probability f, but the Professor does not learn from 
the Student, i.e., the Student’s decisions are entirely unknown to 
the Professor so that the first random walker is not influenced 
by the decisions of the second one. If we consider that in 
neurological exams in children the analysis of communication 
and social interaction in multiple contexts are part of the routine, 
including repetitive patterns of behavior, the (medical) examiner 
will have knowledge of the patient’s actions and therefore, in 
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the context of our problem, the Professor has knowledge of 
the Student’s actions, but is not influenced by these actions. 
Therefore, this problem leads us to the following question: how 
can the first random walker influence the second one and not be 
influenced by him? In other words, how can the Professor teach 
and not learn from the Student’s actions? But, if both can teach 
and learn, how can we call a process of Professor and Student? 
To solve this problem, however, we define that the interaction 
is bilateral, and the probability of the Professor of learning (not 
learn) from Student’s actions, is given by fP (1 − fP). Similarly, the 
probability of the student being able to learn (not learn) with the 
Professor is given by fA (1 − fA). In this way, as the two random 
walkers can learn from each other, both can learn Professor and 
Student labels. For reasons of order, we will call the ERW model 
Professor and the other one Student.

Our model describes the interaction between the two discrete 
random walkers (Professor and Student). We define the 
Professor as the ERW model, whose microscopic dynamics has 
already been described previously. The Student initiates his/her 
movement at the position Y0, at time t0=0 at every instant of time, 
the walker walks one step to the right or one step to the left, with 
probability p and (1 − p), respectively. The stochastic equation 
that quantifies Student’s steps is given by

1 0 1t tY Y v+ += + 	                				                    (5)

and νt+1 a random variable that assumes the values of σť when 
the random walker behaves just like the ERW model. The Student 
accepts the decisions of the ERW model with probability fA and 
rejects decisions with a complementary probability (1 − fA), when 
the walker makes decisions based on his or her own history. The 
memory is formed by a set of random variables νť, ť < t, which the 
walker remembers as follows:

(a)	in time t + 1 a number ť of the set {1, 2, ..., t} is chosen in an 
equiprobable way 1/t;

(b)	the variable νt+1 is determined stochastically as: νt+1=νť 

In the first step, in the instant t=1, the walker is in position Y0, 
accepting (rejecting) the ERW model with probability fA (1 − fA), 
for this process, the stochastic evolution equation is given by

0
1

t

t t
t

Y Y v ′
′=

= +∑                  				                   (6)

for all time. As the student accepts (rejects) Professor’s decisions 
with probability fA (1 − fA), we note that the random variable νť 
can be rewritten as

( )1t A t A tv f f vσ′ ′ ′= + − 	    			                    (7)

and thus, we rewrite the Student’s stochastic equation as

( )0
1 1

1
t t

t A t A t
t t

Y Y f f vσ ′ ′
′ ′= =

= + + −∑ ∑ 	        			                   (8)

For the maximum non-learning limit, fA=0, Student recalls actions 
solely from its history and its stochastic equation is given by (6), 
at the other extreme, fA=1, when there is maximum interaction, 
the stochastic equation is written as

0
1
ó

t

t t
t

Y Y
=

= +∑ '
'

	             				                   (9)

Therefore, with the exception of the first step Yz, the process is 
described by the ERW model.

Similarly, for the Professor, to encompass the ability to learn, 
making him susceptible to the actions of the Student, the 
dynamics of the Professor, will also be influenced by Student’s 
decisions with probability fP and not influenced with probability 
1 − fP. The stochastic equation (2) is modified by the following 
transformation

( )ó 1 ót p t p tf v f= + −' ' '
	                       		                 (10)

resulting in stochastic equation

		                 	                 (11)

which describes the learning of the ERW model with respect 
to the Student. When fP=0, which quantifies the minimum of 
learning, the random walker behaves like the ERW model, while 
fP=1, quantifies the maximum amount of Professor learning in 
relation to student actions. For the maximum interaction, fP=1, 
the stochastic equation takes the following form:

0
1

t

t t
t

X X v ′
′=

= +∑ 	                              			                (12)

and νť the stochastic variable that represents the microscopic 
decisions in Student.

We can consider two cases for the probabilities of interaction 
between random walkers. The first case is when the likelihood of 
learning of the two hikers is equal, i.e., fP=fA and the second when 
fP ≠ fA. We address in this work the case where fP=fA and formulate 
our model under these conditions. The maximum (minimum) of 
perseverance that each (Professor or Student) will have in their 
actions, will occur for the quantitative probability values fP=fA=0 
(fP=fA=1) which correspond to the minimum (maximum) of 
learning, respectively. Therefore, we can vary a single probability 
value by calling fP=fA=f and rewriting the equations (8) and (11) 
respectively as

0
1 1

(1 )
t t

t t t
t t

Y Y f f v
= =

= + σ + −∑ ∑' '
' '

	             		               (13)

 and

( )0
1 1

1
t t

t t t
t t

X X f v f σ′ ′
′ ′= =

= + + −∑ ∑ 	       	                              (14)

For the case of minimal learning, f=0, the models recover their 
ordinary results without mutual learning, with the stochastic 
equations (6) and (2) for the Student and for the ERW model, 
respectively.

Results
Based on the ERW model, we introduced a model of discrete 
random walks, which interact and express different diffusion 
regimes according to the variation of the parameter f. A regular 
parameter for making measurements of the different diffusion 
regimes in random walks is the Hurst exponent (H), present in 
the variance 22 2 2Hx x tσ = + = , which tends to spread in a non-

linear fashion over time, to values of 1 2H ≠ . For H<1/2 (H>1/2) 
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the regime is termed subdiffusive (superdiffusive). For cases 
where the second moment of the position grows faster than the 
first, the following approximation can be used 2 2~ Hx t . The 

estimated means for our finite-length hikes are: 104 pairs of walks 
of size 107. The measurements of the Hurst exponent are 
estimated by the approximations 2 2~ H

Px t  and 2 2~ H
Px t for 

the Student and Professor, respectively.

In Figure 1 typical measures of Student Hurst exponent are 
displayed. The measurements of H are presented according to 
the parameters 0 1p≤ ≤ and 0 1f≤ ≤ , where f is the Student’s 

probability to imitate the Professor’s actions (ERW model), 
measures the different degrees of restriction of interest, with 
impact on Student’s diffusive regimes, as measured by the Hurst 
exponent. The restriction (non-restriction) interest end is 
quantified by f=0 (f=1), which is also the minimum (maximum) of 
inter- action. At point f=0, of maximum restriction of interests 
(higher degree of autism), the Student presents persistent 
microscopic behavior, characterized by measurements typical of 
the Hurst exponent H=1, which qualify the diffusive regime as 
ballistic. At the other extreme f=1, the point of least restriction of 
interests (lower degree of autism), surprisingly, we observe that, 
our model of mutual learning, presents H=1 in ballistic regime at 
the maximum of learning. For the interval 0<f<1, the Student’s 
diffusive regimes are integrally superdiffusive (H>1/2). For finite-
size random walks, we obtain that the smallest measure of the 
Hurst exponent (H ∼ 0.62318), to f=0.6 and p=0.0.

In Figure 2 typical measures of Professor Hurst exponent are 
displayed. Measurements of the exponent H are presented 

according to the parameters 0 1p≤ ≤ and 0 1f≤ ≤ . In this case, 

f, the probability of the Professor Imitating Student actions 
implies that Student’s microscopic dynamics will influence the 
Professor’s microscopic dynamics, thus having an impact on the 
diffusive regimes of the ERW model. In the cases bordering on 
our model, when f=0, there is no learning, implying, therefore, 
that the measures of H exhibit the quantitative values of the ERW 
model, showing that at this limit, this does not depend on the 
microscopic decisions of the other random walker. At the 
extreme of maximum interaction, f=1, the Professor displays 
diffusive ballistic regime with values characterized by H=1. In the 
interval 0<f<1, for intermediate values of interaction, we obtain 
measurements of the Hurst exponent that characterize the 
superdiffusive regime (H>1/2), including the value of p=1/2 which 
is commonly known as a point characterized by having typical 
values of H=1/2 for discrete random walks, which have the 
characteristic of recording the decision made at every instant of 
time t, as can be seen in [6-13]. Except for f=0, when there is no 
learning, and the measures of H are representative of the 

overdiffusive regime, for the interval of 0 1f≤ ≤ . In the intervals 

of 0 1p≤ ≤ and 0 ≤ f ≤ 0.1, there is an abrupt growth of the 

diffusion diagram, Figure 2 in the values of the Hurst exponent, 
where 0<f<0.1 we obtain H>1/2.

Conclusion
Autism spectrum disorders have inspired us to construct discrete 
random walks to assess Autism. We used two random walkers to 
study Autism. Based on the symptoms of pervasive developmental 
disorders (PDDs) and using the ERW approach, for a set of 
discrete random walk pairs, we studied how PDDs symptoms 
can affect diffusive walker regimes. The first random walker, 
called Professor, can learn from the second random walker, 
called Student, with probability fP. Similarly, the probability of 
the student being able to learn (not learn) with the Professor is 
given by fA (1 − fA). For simplicity, we consider the case where 
fP=fA=f, which we control in a unique way using the parameter 
f. Therefore, the Student can learn from the Professor and also, 
the Professor can learn from the Student with probability f, such 
that the microscopic decisions of both have an impact on the 
diffusive regimes of one another. The results are summarized in 
a way that addresses the changes in the diffusive regimes of the 
two random walkers.

The transitions in the Professor and Student diffusive regimes are 
summarized and presented below.

 

Figure 1 Behavior of the Hurst exponent for the stochastic process 
labeled “Student”. Typical values of the Hurst exponent 
are displayed as a function of the parameters 0 1f≤ ≤
and 0 1f≤ ≤ .

 

Figure 2 Behavior of the Hurst exponent for the stochastic process 
labeled “Professor”. Typical measures of the Hurst 
exponent are displayed according to the parameters 
0 1p≤ ≤ and 0 1f≤ ≤ .
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1.	 To the Professor:

(a)	the Professor has the maximum of restricted interests, to 
f=0. At this limit, the diffusive regimes typical of the ERW 
model are recovered;

(b)	we find an abrupt transition in the diffusive regime 
of the Professor, for the interval 0<f<0.1. This fact is 
characterized by the actions of the Professor, also being 
influenced by the student’s actions, having an impact on 
the diffusion regime of the ERW model;

(c)	the diffusion regime for the Professor is characterized by 
measures of the exponent of Hurst H>1/2, for all p, except 
at point f=0, when the ERW models are recovered.

2.	 For the Student:

(d)	we find a ballistic regime at the extremes f=0 and f=1. In 
these cases, the Student exhibits the maximum of restricted 
interests, the Professor’s actions do not influence their 
decisions and the dynamics are essentially deterministic. 
For f=0, there is no learning, so the Student presents the 
maximum restriction of interests. This characteristic may 
be associated with the repetitive behavior presented in 
the PDDs symptom listing, characterizing severe autism. 
In the extreme, f=1, there is the minimum of restriction 
of interests among random walkers, i.e., the Professor 
and the Student learn with the greatest probability. 
The parameter f quantifies how much, the Student and 
the Professor will present restricted interests, therefore 
for f=1, the Professor (Student) learns from the Student 

(Professor) with the maximum probability. Soon the 
Professor’s microscopic dynamics influence the dynamics 
as much as the Student’s microscopic decisions alter that 
of the Professor;

(e)	we find an overdiffusive regime, for f>0. In this case, the 
random walker (Student) undergoes a diffusion transition 
from the ballistic regime to the superdiffusive regime. 
The parameter f quantifies how much, the Student and 
the Professor will present restricted interests, therefore 
for f=1, the Professor (Student) learns from the Student 
(Professor) with the maximum probability. in the region 
of mutual learning with maximum probability, results in a 
diffusive ballistic regime;

(f)	 we find a second transition in the diffusion regime, 
to f → 1, the Student undergoes a transition from the 
superdiffusive regime to the ballistic regime. At this 
limit, there is learning and the reduction of restriction 
of interests occurs, but restricted interests prevail in the 
region of maximum learning.

When the Professor and Student have restricted interests with 
probability f, the former behaves like the ERW model and the 
second shows ballistic behavior at point f=0. For f >0, random 
walkers exhibit the same diffusive behavior, characterized by the 
same quantitative values of the Hurst exponent. The minimum of 
restricted interests associated with DID symptoms are those in 
which they exhibit lower Hurst exponent values (occurs in finite-
length walks for f ≈ 0.6), the larger the severity of the autistic 
degree (for f=0 and f=1).
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