Reach Us +1-217-403-9671
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

The Cardiac Autonomic Control System Response to Submaximal Exercise Test in Children with Cerebral Palsy Compared to Typical Peer

Objective: To compare the cardiac autonomic system at rest and its response to a submaximal aerobic test in children with cerebral palsy (CP) and typically developed (TD) controls.

Design: Twenty-five children with CP aged 6-11 and 20 age and gender matched TD controls participated in the study. RR intervals were monitored at rest, while performing the sub-maximal treadmill test, and during the recovery period. The square-root of the mean of successive differences between adjacent RR intervals (RMSSD) was calculated.

Results: The median level of the submaximal treadmill test stage was 3 for children with CP (95% CI 0.75-3.25), 16/20 TD children completed all test stages. The Log- Rank statistic (χ2 1=30.4) was highly significant (p<0.001). At rest the RMSSD values in children with CP were significantly lower as compared to children TD, and changed less due to the submaximal test and recovery stages (interaction-effect, F2;86=9, p<0.01).

Conclusion: Children with CP show lower RMSSD at rest, and less adaptive to exercise as compared to TD children. Performing physical activity is highly recommended for children with CP, re-educating the cardiac autonomic system is one of its main goals. Assessing the autonomic response to different exercise protocols is the next step needed.


Author(s):

Taly Amichai and Michal Katz-Leurer*



Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+
Flyer image

Abstracted/Indexed in

  • Index Copernicus
  • Google Scholar
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Secret Search Engine Labs